
且便于连接微处理器.驱动信号一般由光耦电路产生。驱动电路主要是使控制输入信号通过光电耦合器传送,设计时可选择HcPI一1505、HC-PL_4506、TLP一759、TLP559等型号的光电耦合器,并使光耦与IPM控制端子间的布线短,布线阻抗小。以上推荐型号的光电耦合器均为发光二极管驱动方式,dv/dt的耐量小,故采用光耦阴极接限流电阻的驱动电路形式,完整的驱动电路如图2所示。图2驱动电路,其结构为交-直-交电压型变频器,通过PWM信号控制IGBT的导通,得到频率可变的交流输出,则可实现交流电机的无极调速。图3中,驱动单元共7组,上桥臂用3组,下桥臂用3组,制动用1组;控制电源共4组,上桥臂用3组,下桥臂与制动单元公用1组。P、N为主电源输入端(整流输入),U、V、W接三相异步电机,P、B端接制动耗能电阻。图3应用电路1(变频调速)如图4所示为IGBT一IPM应用于有源电力滤波器的电路原理图。众所周知,由于接人电力系统的非线性负载融益增多,致使电力系统的电流渡形发生畸变,重影响电网供电质量及电气设备的正常安全运行。有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,它以实时检测为基础,通过IPM信号控制IGBT的导通,输出电流对畸变波形实时跟踪补偿。
并在检测电阻40上得到检测信号。因此,这种将检测电阻40通过引线直接与主工作区的源区金属相接,可以避免主工作区的工作电流接地电压对测试的影响。但是,这种方式得到的检测电流曲线与工作电流曲线并不对应,如图4所示,得到的检测电流与工作电流的比例关系不固定,在大电流时,检测电流与工作电流的偏差较大,此时,电流传感器1的灵敏性较低,从而导致检测电流的精度和敏感性比较低。针对上述问题,本发明实施例提供了igbt芯片及半导体功率模块,避免了栅电极因对地电位变化造成的偏差,提高了检测电流的精度。为便于对本实施例进行理解,下面首先对本发明实施例提供的一种igbt芯片进行详细介绍。实施例一:本发明实施例提供了一种igbt芯片,图5为本发明实施例提供的一种igbt芯片的结构示意图,如图5所示,在igbt芯片上设置有:工作区域10、电流检测区域20和接地区域30;其中,在igbt芯片上还包括一表面和第二表面,且,一表面和第二表面相对设置;一表面上设置有工作区域10和电流检测区域20的公共栅极单元100,以及,工作区域10的一发射极单元101、电流检测区域20的第二发射极单元201和第三发射极单元202,其中,第三发射极单元202与一发射极单元101连接。
江苏芯钻时代电子科技有限公司,专业从事电气线路保护设备和电工电力元器件模块的服务与销售,具有丰富的熔断器、电容器、IGBT模块、二极管、可控硅、IC类销售经验的专业公司。公司以代理分销艾赛斯、英飞凌系列、赛米控系列,富士系列等模块为主,同时经营销售美国巴斯曼熔断器、 西门子熔断器、美尔森熔断器、力特熔断器等电气保护。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。