
并在检测电阻40上得到检测信号。因此,这种将检测电阻40通过引线直接与主工作区的源区金属相接,可以避免主工作区的工作电流接地电压对测试的影响。但是,这种方式得到的检测电流曲线与工作电流曲线并不对应,如图4所示,得到的检测电流与工作电流的比例关系不固定,在大电流时,检测电流与工作电流的偏差较大,此时,电流传感器1的灵敏性较低,从而导致检测电流的精度和敏感性比较低。针对上述问题,本发明实施例提供了igbt芯片及半导体功率模块,避免了栅电极因对地电位变化造成的偏差,提高了检测电流的精度。为便于对本实施例进行理解,下面首先对本发明实施例提供的一种igbt芯片进行详细介绍。实施例一:本发明实施例提供了一种igbt芯片,图5为本发明实施例提供的一种igbt芯片的结构示意图,如图5所示,在igbt芯片上设置有:工作区域10、电流检测区域20和接地区域30;其中,在igbt芯片上还包括一表面和第二表面,且,一表面和第二表面相对设置;一表面上设置有工作区域10和电流检测区域20的公共栅极单元100,以及,工作区域10的一发射极单元101、电流检测区域20的第二发射极单元201和第三发射极单元202,其中,第三发射极单元202与一发射极单元101连接。
是由重量感测组件、电容及电阻建构而成的自动回馈控制系统。该非接触式探针点胶设备1目的为,当该探针14前端的银基奈米浆料碰触到该散热基板2的瞬间,该组传感器15量测电容(电阻)即会改变,此时设备1可自动停止下针,达到避免传统接触式点胶技术因散热基板表面高低差过大而破坏基板的情形发生,如图3所示。步骤s102:将涂布于该散热基板上的银基奈米浆料加温至55~85℃,持温5~10分钟。步骤s103:将一ic芯片放置于该散热基板的银基奈米浆料上方,形成一组合对象。步骤s104:利用一热压机对该组合对象进行加压与加热的热压接合制程,烧结该银基奈米浆料,以形成该ic芯片与该散热基板的热接口材料层,其中该热压机的工作参数如下:加压压力为1~10mpa,加热到210~300℃,并维持上述压力与温度30~120分钟,再冷却至室温。若不对该组合对象加压,则将该组合对象加热至210~300℃,并保温在上述温度30~120分钟后再冷却至室温。如是,藉由上述揭露流程构成一全新的高功率模块的制备方法。上述热压接合制程后,该ic芯片与该散热基板的热接口材料层90%以上成分为银,孔隙率小于15%,且厚度为~10μm,如图4所示。若未对该组合对象加压而加热烧结后。
江苏芯钻时代电子科技有限公司,专业从事电气线路保护设备和电工电力元器件模块的服务与销售,具有丰富的熔断器、电容器、IGBT模块、二极管、可控硅、IC类销售经验的专业公司。公司以代理分销艾赛斯、英飞凌系列、赛米控系列,富士系列等模块为主,同时经营销售美国巴斯曼熔断器、 西门子熔断器、美尔森熔断器、力特熔断器等电气保护。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。